Introduction to Surrogate Modelling and Surrogate-Based Optimization


An exceedingly large number of scientific and engineering fields are confronted with the need for computer simulations to study complex, real world phenomena or solve challenging design problems. When dealing with such computationally expensive simulation codes or process measurement data, surrogate modelling methods are firmly established as facilitators for design space exploration, sensitivity analysis, uncertainty quantification, optimization, visualization,etc.

After an introduction to surrogate modelling, this talk will explore surrogate-based optimization in more detail. First, Bayesian optimization based on the popular Gaussian process model will be introduced and how the same concept can be applied to solve other common engineering tasks. Secondly, to illustrate this further, a Bayesian optimization algorithm is presented that find all designs that satisfy the design requirements with a minimal number of expensive simulations.

Optimisation Community

The Optimisation Working Group has formed an online Community to help disseminate best practice and encourage the adoption of optimisation methods and technology. More information can be found on the Optimisation Community webpage.

The Optimisation Community is only accessible to NAFEMS members and no significant knowledge or expertise is required to participate. The only requirement is a desire to learn more and to interact with other engineers and scientists who have an interest in expanding their capabilities in the optimisation technical area.

Find out more at nafe.ms/owg-community

Document Details

Reference

W_Sep_20_Global_6

Authors

Couckuyt. I

Language

English

Type

Presentation

Date

2020-09-29

Organisations

Ghent University

Region

Global

 NAFEMS Member Download



This site uses cookies that enable us to make improvements, provide relevant content, and for analytics purposes. For more details, see our Cookie Policy. By clicking Accept, you consent to our use of cookies.