Reliability Analysis for Expensive Computer Models


The computational cost of industrial-scale models can cause problems when performing sampling-based reliability analysis. This is due to the fact that the failure modes of engineering systems typically occupy a small region of the performance space and thus require relatively large sample sizes to accurately estimate their characteristics.

This talk explores two methods for reducing the cost of reliability analysis whilst preserving the accuracy of estimated quantities. The first approach, based on Markov chain Monte Carlo sampling, can be used when several thousands of code evaluations are available. The second method, built on the ideas of Gaussian process-based optimisation, lowers this requirement from tens to hundreds of evaluations.

Document Details

Reference

W_Aug_20_Global_19

Authors

Hristov. P

Language

English

Type

Presentation

Date

2020-08-25

Organisations

University of Liverpool

Region

Global

 NAFEMS Member Download



This site uses cookies that enable us to make improvements, provide relevant content, and for analytics purposes. For more details, see our Cookie Policy. By clicking Accept, you consent to our use of cookies.