Aircraft air-intake optimisation using AI supported Virtual Blade Model


Aircraft air-intake optimisation using AI supported Virtual Blade Model

Gábor Zipszer, eCon Engineering Kft.

The water-cooler intake of an ultra-light aircraft was optimised accounting for propeller induced flow field by the utilisation of a 3D corrected Virtual Blade Model. The 3D aerodynamical corrections were derived by an Artificial Intelligence module linked to the in-house developed VBM. The CFD model was built-up using Ansys Fluent, while the optimisation was governed by OptiSLang. Three of the optimised intake designs were built and tested during in-flight measurements.

Gabor Zipszer is a senior CFD simulation engineer at eCon Engineering Kft. He was the leader of a 3-year long tender project focusing on the development of CFD and FEM simulation and optimisation methodologies for small- and medium-aircraft verified by an extensive in-flight test campaign. As part of the project an AI driven 3D corrected Virtual Blade Model was developed and applied during the optimisation tasks. Gabor previously worked as an aero-performance engineer at Dowty Propellers (UK) and were involved in new product development and wind tunnel test campaign activities.

Gábor Zipszer is a senior CFD simulation engineer at eCon Engineering Kft. He was the leader of a 3-year long tender project focusing on the development of CFD and FEM simulation and optimisation methodologies for small- and medium-aircraft verified by an extensive in-flight test campaign. As part of the project an AI driven 3D corrected Virtual Blade Model was developed and applied during the optimisation tasks. Gabor previously worked as an aero-performance engineer at Dowty Propellers (UK) and were involved in new product development and wind tunnel test campaign activities.

Document Details

Reference

nrc22ee_pres_07

Authors

Zipszer. G

Language

English

Type

Presentation

Date

2022-10-19

Organisations

eCon Engineering

Region

Global;Eastern Europe

 NAFEMS Member Download



This site uses cookies that enable us to make improvements, provide relevant content, and for analytics purposes. For more details, see our Cookie Policy. By clicking Accept, you consent to our use of cookies.