Vergleich parametrisierter und Parameter-freier KI-Modelle für industrielle Entwicklungsprozesse


Die numerische Simulation hat sich über die vergangenen Jahrzehnte als wichtiges Werkzeug in der Produktentwicklung etabliert. Die Anforderungen und Wünsche an die Simulationsmodelle hinsichtlich physikalischer Mechanismen (Mehrphasenströmungen, Kopplung unterschiedlicher Phänomene, z. B. elektro-magnetischer Felder, strukturmechanischer Anregungen, hochfrequenter Schwingungen) sowie Größe der Probleme führen zu hohen Rechenzeiten.

Auch auf dem Gebiet strömungs- und strukturmechanischer Probleme wird heute auf Ansätze mit Artificial Intelligence (AI) und Machine Learning (ML) gesetzt. Dies zeigt sich u. a. an der Anzahl der Veröffentlichungen, die in den letzten 10 Jahren stetig steigend sind. Die Anwendungsgebiete reichen dabei von Optimierungsaufgaben in multidimensionalen Parameterräumen, von der Auswertung der Daten aus Simulation und Messung aus Strukturbeanspruchungen über die Beschleunigung von hochauflösenden Turbulenzmodellen, bis hin zur Beschreibung mehrphasiger Strömungen.

Im Rahmen dieses Seminars werden Anwendungsgebiete, Möglichkeiten und Grenzen des Einsatzes von ML- und AI-Methoden in numerischen Simulationsanwendungen, insbesondere im industriellen Einsatz, in unterschiedlichen Branchen und Unternehmensgrößen diskutiert.

Document Details

Reference

PRES-3878

Authors

Bauer. M

Language

German

Type

Presentation

Date

2022-05-16

Organisations

Navasto

Region

DACH

 NAFEMS Member Download



This site uses cookies that enable us to make improvements, provide relevant content, and for analytics purposes. For more details, see our Cookie Policy. By clicking Accept, you consent to our use of cookies.