Abstract Modeling Enables Aerospace Corporation Project to Reap Benefits of Collaborative Engineering Process

 

NAFEMS Webinar Series

About one-quarter of all space-borne sensors being developed for NASA and Security Space applications are overrunning their budget and schedule allocations by factors of 2X or more. A substantial improvement in the cycle time of development for these systems is needed while retaining adequate system performance levels with high reliability. Collaborative engineering practices based on new abstract modeling technology promise significant reductions in project cost and delivery time.

This presentation describes how a multi-disciplinary design team from The Aerospace Corporation utilized a unified performance engineering workspace powered by abstract modeling to support a collaborative engineering process for the design of space optical systems while still leveraging their off-the-shelf CAD and CAE (simulation) tools for evaluating structural, thermal and optical performance. The author presented results of use of this approach on a current flight hardware program, with an emphasis on the significant productivity improvements that were realized. Comparison of simulation results to empirical test results was also discussed.

 

What Is Abstract Modeling

An abstract model is a functional model containing all the engineering data (performance requirements/metrics, material properties, boundary conditions, and loads) for a part or assembly that is independent of the particular design geometry. With an abstract model, engineering analysis data is reapplied to the model when the geometry changes, and you easily re-run multiple “what if” conceptual analyses. Teams can document engineering “best practices” workflows abstractly step-by-step, and capture that domain knowledge in reusable and modifiable templates. Abstract modeling enables discipline engineers to assess the effects of their design modifications on the other discipline aspects of the design without having to be able to run the underlying codes of those disciplines themselves. Multiple versions of the CAD geometry become the inputs that drive the abstract model and the resulting performance simulation models are automatically built, analyzed and results generated with little additional work by the simulation domain experts. Entire project teams are able to quickly view the system level engineering results versus the design requirements in an easy-to-comprehend project dashboard. Work in process data for an entire project cutting across multiple organizational disciplines is automatically captured via the abstract model enabling model re-use as well as results traceability throughout the life of the project.

 

Design of Space Borne Sensors - Abstract Modeling In Use

An Aerospace Corporation project engineering team comprised of optical, mechanical, structural, and thermal engineers utilized recent advances in abstract modeling to augment and accelerate the evaluation of thermally-induced structural deformations on the optical performance of a flight sensor.

By utilizing an abstract model approach, the team had access to CAD and CAE information across multiple engineering disciplines and tools without the need for each simulation discipline to have direct knowledge of how to run all the underlying existing CAD and CAE packages. The domain experts utilized an abstract model to evaluate multi-physics interactions in a very complex opto-mechanical assembly in a near-real time manner that would be impossible with traditional tools and approaches. The abstract model, along with the single engineering workspace, provided the team with a work in progress simulation environment that is independent of the underlying CAD/CAE tools used in the design process. Because the abstract model tracks requirements and results independent of geometry, the team had access to a dashboard view of performance data/results for each design iteration. Abstract modeling technology gave the whole team including simulation domain experts, design engineers, program management, and financial representatives the ability to complete “real time” design reviews. These design reviews were performed with the full quantitative and visualization power of the robust multi-disciplinary design and simulation data rather than the fragmented and thin results abstractions typically captured via PowerPoint snapshots, Excel spreadsheets and Word/HTML/PDF reports.

Agenda

Welcome & Introduction

Matthew Ladzinski, NAFEMS North America

 

Multi-Disciplinary Product Development

David A. Thomas, The Aerospace Corporation

 

Q & A Session

David A. Thomas, The Aerospace Corporation
Malcolm Panthaki, Comet Solutions

 

Closing

View this webinar (PDF)

 

Webinar Recording

 

(Members Only )

 

(Note: This broadcast is part of the NAFEMS vendor series that allows various solutions providers the opportunity to deliver technical information to the NAFEMS community. NAFEMS does not endorse any vendor, but tries to provide an unbiased view of the marketplace.)

 



This site uses cookies that enable us to make improvements, provide relevant content, and for analytics purposes. For more details, see our Cookie Policy. By clicking Accept, you consent to our use of cookies.