Advances in Research and Industrial Application of Experimental Mechanics

NAFEMS Webinar Series

 

The focus of the webinar is ‘experimental mechanics’ which can be defined as the application of experimental techniques for analysis of loaded structural components. The webinar starts with a brief introduction to experimental mechanics techniques and their application. The second presentation is a detailed description of the application of such techniques in the aircraft industry with attention on the benefit to design. The third presentation demonstrates the reach of experimental mechanics and how it can be used to analyse complex ultrasonic machining process mainly with medical applications.

This research webinar has been organised by the British Society for Strain Measurement (BSSM) on behalf of the Forum of Applied Mechanics.

Introduction

The purpose of the introduction was to introduce the wide ranging topic of experimental mechanics and provide some example applications. The introduction described some of the British Society for Strain Measurements activity and its close association with the Forum for Applied Mechanics.

The Importance of Experimental Mechanics in Solving Aerospace Problems

Airbus is one of the world's leading aircraft manufacturers of airliners with more than 100 seats. The Airbus product line comprises 14 aircraft models, from the 100-seat single-aisle A318 jetliner to the 525-seat A380 (which is the largest civil airliner in service), it's total fleet of delivered aircraft being almost 5,500. Airbus has expanded into the military transport aircraft sector. The A400M multi-role military airlifter - being produced under management of the Airbus Military company - will replace fleets of ageing C-130 Hercules and C-160 Transalls beginning in 2009. In addition, aerial tankers for in-flight refuelling and transport missions are available in aircraft variants derived from the A310 and A330.

For more than 20 years Experimental Mechanics (EM) has played a prominent role at Airbus in research, design, development and in-service inspection of Airbus aircraft. The main reason for this is that EM techniques, particularly full-field optical methods, are very powerful and provide high quality data to support analysis and design. The Experimental Mechanics group at Airbus has over the years developed into a team which implements and advises on many techniques, namely: Strain gauge technology, Photoelasticity, Moiré or fringe based methods, ESPI, Digital Image Correlation, Residual Stress determination including Neutron and Synchrotron Diffraction, incremental centre hole drilling and layer removal.

This presentation entitled 'The Importance of Experimental Mechanics in Solving Aerospace Problems' aims to demonstrate that many Experimental Mechanics methods are alive and well and being used to advance the state of the art in Aerospace Engineering. The presentation showed the versatility and broad applicability of EM methods, how they are used for much more than material or structural testing and assist engineers to obtain better understanding of materials and structures allowing more extensive optimisation.

Applications of Power Ultrasonics in Engineering

Power ultrasonics is a branch of ultrasonics that uses the vibrational energy of a device oscillating at an ultrasonic frequency in order to effect a physical change in a medium. This differentiates power ultrasonics from diagnostic (or imaging) ultrasound. The frequencies used in power ultrasonic applications are usually in the low ultrasonic range, of 20-100 kHz, and the power requirements, usually tens of watts to several kiloWatts, are usually significantly higher that those required in other ultrasonic applications, although these boundaries are becoming increasingly blurred. Applications of power ultrasonics in engineering are growing and now encompass a wide variety of industrial processes and medical procedures. However, the mechanism by which a process can benefit from power ultrasonics is not common for all applications and can include one or more of such diverse mechanisms as acoustic cavitation, heating, microfracture, surface agitation and chemical reactions. This presentation gives an overview of some of the current applications being researched within the power ultrasonics group at the University of Glasgow, including bacterial inactivation, food cutting and drilling for planetary rock sample retrieval.

Agenda

Welcome & Introduction

Prof. Janice Barton

The Importance of Experimental Mechanics in Solving Aerospace Problems

Dr. Richard Burguete, Airbus UK

Applications of Power Ultrasonics in Engineering

Prof. Margaret Lucas, Ph.D., University of Glasgow

Closing

 

 

 

 

Back to All Webinars



This site uses cookies that enable us to make improvements, provide relevant content, and for analytics purposes. For more details, see our Cookie Policy. By clicking Accept, you consent to our use of cookies.