The pace of development in the aerospace market is accelerating faster than ever and the role of FEA and CFD is a major part of today's product development processes. One of the major challenges for all analysts in the aerospace industry is in producing solid, coherent analysis to best-practice guidelines in a manner which can show management the true value and benefit of FEA and CFD. This industry-focused workshop brought together analysts from across the aerospace industry to discuss, review and discover best-modelling practices, while highlighting the challenges that all users of analysis, and their management, should be considering.
The event ran in parallel with the Aerospace Design Expo at the Anaheim Conference Center. The seminar was a compilation of sessions supporting the FEA, CFD, and multi-physics coupling theme. Those in attendance considered this seminar to be a great success.
- Brett Soltz, The Aerospace Corporation
  An overview of the finite-element method was given, with particular emphasis on how the quality of a solution is determined by the analysts’ discretization.   Examples were presented that highlight how constraint equations can be used to enforce rotational and displacement compatibility to the  modeling accuracy of fundamental structural shapes.    Recommendations on how to improve model correlation assessments were outlined while techniques for modeling strain gages were presented.
– Louis Komzsik, UGS
  The increasing role of analysis in product life-cycle simulations has become an integral part of product life-cycle management.  Engineering scenarios of life-cycle physical simulations and the analysis of very large, multimillion grid and element problems were discussed.  Computational technologies including graph-theory based computations, large linear systems, robust eigenvalue techniques, and domain decomposition were emphasized while state-of-the-art results from industrial applications using NX NASTRAN were presented.
– Paul Blelloch, ATA Engineering
 Air mass has been found to influence the low frequency modal behavior of lightweight aerospace structures such as reflectors.   An example that illustrates how simple methods to smear mass do a poor job of representing the effect of the air mass was presented.   Through a comparison with test data, the MFLUID method in Nastran was shown to do a good job of representing the air mass effect on a spacecraft reflector.  Guidelines for manageable run times in terms of the number of wetted elements were also presented.
– Juan Betts, LMS
  This session provided a closer look at structural & flow induced multi-attribute analysis. It also provided a strong review on aero-acoustics and an evaluation on various approaches to arrive an acceptable solution.
– Hanson Chang, MSC.Software
  Whether you are doing preliminary structural sizing or final detailed stress analysis on aerospace components, finite element analysis is an indispensable tool for you.  But just how accurate is your finite element analysis?  How much discretization error is present in the model?  Are the analysis results good enough or should you spend more time refining the mesh?  This presentation shed light on 7 tricks of the trade that experienced analysts have been using in the industry. These 7 techniques were captured in a handy one-page reference chart and are alphabetized from A thru G for ease of memorization.
– David Vaughn, CD-adapco
Goals behind CAE best practices for software tool standardization and interoperability were presented in this session. These goals include ensuring accuracy on a wide range of problems, having correct answers on a consistent basis, having efficient of design cycle times, and supporting manufacturability.
– Zeng-Chan Zhang, LSTC
                                                                                                                
  Some non-traditional features of Conservation-Element & Solution-Element (CESE) method and Fluid-Structure Interaction (FSI) strategies were presented, including several fluid and FSI examples. This method (solver) is good for all speed flows, especially for high-speed flows with complex shock patterns.
– Paul Eder, Altair Engineering
  Detailed part analysis and optimization in the aerospace industry involves the creation of sub-models, or breakout models, extracted from global or internal loads models.  The creation of these sub-models can be difficult and time consuming using traditional methods.  Utilizing Free Body Diagram (FBD) concepts, one can simplify and streamline the understanding, creation and setup of breakout models.  FBDs allow the user to understand load paths and to create free body loads of interest for detailed models as boundary conditions (BCs) within a sub-modeling scheme.  FBD modeling techniques, processes and future technologies were discussed.
– Wayne Tanner, Leading Edge Engineering
  The concept of function vs. geometry can be used as the center of the development process to enable multi-representations of a product, with multi-levels of fidelity, in an optimization framework outside of the traditional CAE environment.
– Sandor Becz, ABAQUS
  Woven fabric composite materials have found increased usage in aerospace structures due to their light weight and high energy absorption characteristics.  The ability to model these structures accurately during impact simulations is critical to the efficient use of these materials.  A progressive damage and failure model in ABAQUS/Explicit that meet these needs was discussed.
– Carl Poplawsky, MAYA HTT
  Finite element analyses generate huge amount of data. This session offered best practices when using stress processors, grid point force processors, element force processors, modal processors, energy processors, random processors, and sine processors.
This site uses cookies that enable us to make improvements, provide relevant content, and for analytics purposes. For more details, see our Cookie Policy. By clicking Accept, you consent to our use of cookies.